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Abstract

The scope of software documentation resources in-
cludes both official resources like API documentation
and crowd-sourced websites such as Stack Overflow.
Threads on Stack Overflow contribute greatly to doc-
umentation but are of varying quality. Posts on Stack
Overflow are publicly editable, with users optionally
providing descriptive edit messages. These edits are
categorised in the paper ‘An Annotated Dataset of
Stack Overflow Post Edits’[2].

To improve them, this project develops and eval-
uates a prototype model to improve basic post read-
ability using the results from this dataset. This was
achieved primarily through use of natural language pro-
cessing and machine learning, alongside trivial read-
ability improvements. The resulting program can fix
trivial issues such as sentence casing and formatting,
and also warns users when often-redundant informa-
tion is added to posts or documentation.

1 Introduction

Software documentation assists a wide range of pro-
grammers from every skill level; it ensures the software
is easy to understand and program for. Due to its na-
ture as an instructional tool, it must be perceived as
authoritative to ensure reliability and trust.

Good software documentation can take time to
write, so often gets crowd-sourced through popular
community-led sites such as Stack Overflow. While
this improves the quantity of documentation, the qual-
ity suffers; it can be poor in terms of readability. In
order to keep information clear, concise, and reliable,
existing Stack Overflow posts are refined by commu-
nity members through edits. These post edits are all
documented, and a portion of them have descriptive
‘edit messages’, often used to note what was changed
in the edit.

The paper ‘An Annotated Dataset of Stack Over-
flow Post Edits’[2] takes this data and categorises it by
what was mentioned as a change in the edit message.
These categorised edits are explored in this project to
apply their use in the context of improving existing
Stack Overflow posts in terms of usability and read-
ability.

2 Project Motivation

While software exists to improve the quality of exist-
ing code, there is not much in terms of software used to
improve readability and usability in existing software
documentation. The goal of this project is to provide a
usable prototype as a proof of concept to demonstrate
that Stack Overflow posts (and, by extension, software
documentation) can be improved through natural lan-
guage processing and by use of machine learning to
categorise the data.

3 Literature Review

3.1 Natural Language Processing

Natural language processing (NLP) techniques are im-
portant in processing of user-generated content; Stack
Overflow edit messages and the edits they convey do
not have a mandated style to follow. NLP has been
investigated towards usage in software documentation
before, including with Stack Overflow [8]. The study
(Treude et al., 2017) found that most traditional NLP
libraries were not efficient at parsing software docu-
mentation correctly due to improper treatment of to-
kens and syntax. From investigation they found the
best NLP library to use was the SpaCy python library;
from a manual random subset of 1,116 tokens gener-
ated from analysing Stack Overflow text it performed
with an accuracy of 90%. Furthermore, another study
conducted to use NLP techniques and machine learning
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libraries [1](Alreshedy et al, 2018) used Stack Overflow
posts and code samples.

3.2 Stack Overflow Edits

Considerable progress has been made in the pursuit of
using Stack Overflow edits. Many of these pursuits use
the SOTorrent database; a set of Stack Overflow posts
built to analyse the evolution of posts through their
edits. Diamantopoulos et al. investigated multiple se-
ries of edits to Stack Overflow posts [5] to find common
patterns in the edits; they suggested that the research
could be used to recommend edits in future posts, but
did not implement or create such a tool. Similarly,
Tang et al. [11] used Stack Overflow edits to investi-
gate whether edits and edit-messages together could be
used as training data to fix potential bugs in external
code; in their experiment, much like this project, they
categorised types of edits to attempt to find the most
useful for fixing bugs. Furthermore, Yin et. al [15] pro-
posed a method to train a neural network to ‘capture
the correlation between NL and code‘, with the possi-
bility of scaling their system beyond the programming
languages they used to test.

3.3 Software Documentation

Improvement of software documentation is also a
heavily-tread topic; other approaches often similarly
use Stack Overflow as a source of training data. Robil-
lard et al. [12] used a machine-learning approach to cre-
ate the Supervised Insight Sentence Extractor (SISE),
which analyses posts from Stack Overflow and finds ‘in-
sight sentences’ which can be used to augment software
documentation. This project takes a similar approach
by attempting to provide useful augmentations of soft-
ware documentation directly.

Uddin et al. [13] found the three severest problems
with software documentation were ambiguity, incom-
pleteness, and incorrectness of content.

3.4 Related Work

Stack Overflow is used commonly as a source of re-
search and tool development. Yang et. al [14] specifi-
cally used code snippets in StackOverflow posts to de-
termine how usable each snippet on the site is, with
the goal of ‘developing automated tools with the Stack
Overflow snippets and surrounding text’.

Nasehi et. al [7] used categorisation of Stack Over-
flow posts to determine that ‘the explanations ac-
companying examples are as important as the exam-
ples themselves’, further proving the necessity of well-
written documentation accompanying syntax exam-
ples.

Aside from Stack Overflow, there have been at-
tempts to use NLP to analyse other publicly editable
online sources of information such as Wikipedia [4],
where Daxenberger et al. classify edit categories in
Wikipedia revisions. These edit categories are used to
detect vandalism and improve site quality through la-
belling problematic pages.

This project has a similar framework to these works;
building on top of existing Stack Overflow categorisa-
tion [2](Baltes et al., 2020) allows us to immediately
identify fixes that could be models for future machine
learning training.

4 Methodology

4.1 Tools and Software Used

For testing and training machine learning models
alongside natural language processes, rapid iteration
and testing is required. For this reason, Python
3.8 was chosen alongside the Python library Jupyter
Notebook[6], which assisted in both presentation and
iteration of the data. Furthermore, many Python li-
braries for machine learning and natural language pro-
cessing exist; this allows for compatibility between seg-
ments of the program, saving time and effort. The main
libraries used included pandas[10] for data analysis,
scikit-learn[9] for machine learning, and nltk[3] for
natural language processing, and textblob for spelling
correction.

4.2 Data Used

The data used was sourced from the dataset used in
the paper ‘An Annotated Dataset of Stack Overflow
Post Edits’. The sample used to train the data con-
sisted of 10487 unique post revisions, with correspond-
ing ContentBefore and ContentAfter fields, alongside
which category of edit was found in the edit message.

4.3 Difference Tool

Python by default does not have a tool to cleanly dis-
play the difference between two strings. This project
uses the difflib library to compute differences be-
tween the strings, and the colorama library to display
any differences in colour. The differences generated
through difflib categorise each difference as addi-
tions, removals, or updates to the string, which are all
represented in this project’s ‘diff tool’ through different
colours. It also generates a ratio of similarity between
the two strings, which is used in this project as part of
automated testing.

4.4 Natural Language Processing

4.4.1 Redundant Phrase Removal

The primary goal for natural language processing in
this project was to warn the user of any phrases that
commonly get removed as part of edits to Stack Over-
flow posts. If prevented before the need for an edit, it
may improve the quality of the text at a glance.

The method for identifying commonly-removed
phrases was to first find the n-grams that appeared
the most in edits marked as ‘removing content’. This
was done by iterating over the dataset, using the
difflib library to compare the ContentBefore and
ContentAfter fields. For any text that was computed
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as ‘removed’ or ‘updated’, the ‘before’ field was to-
kenised and n-grams of the text were calculated for an
n value of 3 to 7. Any removed text that was shorter
than three characters long could not form a meaningful
n-gram and was discarded.

Figure 1: The 10 most common n-grams found based
on the removal data (n ≥ 3)

While this data shows conclusively what n-grams
are removed the most from the entire dataset, it does
not show how proportionally they are removed; for ex-
ample, the n-gram ‘i want to’ (shown in Figure 1) is
considered the ‘most removed’, but realistically would
not be consistently removed regardless of context.

To obtain the ‘most commonly removed’ n-grams,
the data was searched once again, aiming to find all
the n-grams in the dataset regardless of whether the
diff-tool marked them as ”removals”. The totals found
were then compared to how often each was marked as
a removal, creating a proportion for each n-gram that
was used to sort the data.

Figure 2: The 10 most common n-grams based on how
proportionally they were removed during edits to Stack
Overflow posts (n ≥ 3)

This sorted data (Figure 2) displays a distinct dif-
ference to the earlier result. Now the phrases that
are present in the top 10 are phrases that realistically
provide no meaningful input towards documentation.

With this data, the n-gram ‘i want to’, while previously
showing up as ‘most removed’, now shows as removed
in only 14.7% of edits.

With the proportional n-grams identified, they were
saved to a .csv file for future use, preventing the need
for recalculation. During operation, the prototype
reads the input text line-by-line, and attempts to find
any of the n-grams inside it. The system prioritises
higher values of n where possible; for example, the
phrase ‘any help would be’ would be prioritised over
‘help would be’ as higher values of n usually mean
higher specificity. If any of the n-grams are found in
the input that have more than a 50% removal rate, a
warning is generated encouraging the user to remove
the phrase (Figure 3).

Figure 3: A warning generated through the prototype,
suggesting the removal of the phrase ‘hope this helps’.

4.4.2 Spelling Correction

Natural language processing was also used in the
project for correcting spelling. This is done word-by-
word, instead of in the context of the sentence; as such
it is more limited than a more thorough approach. It
cannot fix grammatical issues like tense or improper
homophones as a result, as it lacks the context of the
surrounding words.

The text is scanned using regular Python, compar-
ing each word against both a list of English words and
a list of Stack Overflow tags. The list of tags is nec-
essary to encapsulate lots of technical jargon that gets
added to posts; without it, words like ‘YouTube’ get
corrected to ’couture‘. Once a potentially-misspelled
word is found, the textblob library is used to find
potential replacements. If textblob finds a suitable
replacement, it is replaced, and a message is logged
mentioning the change. If no suitable replacement is
found, the program naively assumes that the word it
has found is part of inline code, and encapsulates it in
Markdown inline code tags. This was the simplest way
in the project to identify inline code in StackOverflow
posts; however, due to this simplicity it often finds false
positives.

4.5 Machine Learning - Code Identifi-
cation

4.5.1 Training the Model

The goal of machine learning in this project is to find
and appropriately tag code snippets in Stack Overflow
with Markdown tags. Often posters on Stack Overflow
will copy and paste their error message or code without
formatting it correctly, which makes it hard to read and
answer.

The machine learning model trained for this project
took samples of code taken from the same categorised
dataset used for everything else. To gather training
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data in order to categorise text as ‘code’ or ‘not code’,
the dataset was filtered appropriately. Text was con-
sidered ‘code’ if it had fewer than 10 spaces per line,
alongside whether it contained a semicolon at the end
of the line. Any pre-existing code-snippets (marked
with the s̀ymbol) were also included as code. A sample
of this can be seen in Figure 4.

Text in the dataset was considered ‘not code’ when
it contained more than 10 spaces per line and/or in-
cluded singular capital letters (such as the capital let-
ter ‘I’). URLs were also searched for and removed, as
they appear frequently in Stack Overflow posts. To get
pure text, most punctuation and digits were removed;
this has the limitation of inaccurately removing quota-
tion marks from words. A sample of text considered
‘not code’ can be seen in Figure 5.

Both sets of training data removed any newline
characters, tab characters, and any non-ASCII Unicode
symbols for a string of words usable in the model.

Figure 4: A short sample of the type of text considered
in the training data as ‘code’.

Figure 5: A short sample of the type of text considered
in the training data as ‘not code’.

4.5.2 Code Identification

The model was trained using the ‘Native Bayes classi-
fier’ model in the scikit-learn library. The Native
Bayes classifier is a probabilistic categoriser that at-
tempts to predict categories of text depending on pro-
vided training sets of similar data.

The tagging system reads through the code and
feeds each line into the model, which gives its predic-
tion as to whether the line is code or not. The model
is set to automatically ignore any lines starting with a
preceding angle bracket, as those are most commonly
used in Markdown and Stack Overflow as indication
of a stack trace or console output. It also skips any
existing code snippet which already have the Mark-
down formatting around them, as false-positive code
identifications are rare on Stack Overflow. Finally, it
skips any lines with square-bracketed digits, as these
are most likely image tags. After the processing, if a
line is identified as ‘containing code’, it is wrapped in
Markdown tags.

4.6 Trivial Changes

Trivial changes involve improvements that do not re-
quire machine learning or natural language processing
to function. Simple Python functions and text replace-
ments can fix most of the problems classified as ‘For-
matting’ in the dataset. Examples of these include sen-
tence casing and Markdown replacements; ordered lists
in Stack Overflow require a period rather than a round
bracket, and that is easily replaceable through regular
expressions and text replacement functions.

5 Experimental Setup

5.1 Manual Testing

Manual testing was performed on a case-by-case ba-
sis based on personal opinion. The tests were made
against a dataset of 150 randomly-selected individual
posts. These posts were divided into 30 of the following
categories: ‘Formatting’, ‘Grammar’, ‘Adding’, ‘Edit-
ing’, and ‘Improving’. Tests was considered a success
as considered against the question: ’Did the edits made
improve the post?’ As this is inherently opinionated,
the tests were performed with some leniency; errors in
the result that were present before the prototype ran
were considered less important than errors fixed by the
prototype.

5.2 Automated Testing

Similar to the manual method, automated testing was
performed based on 150 random posts of the same cat-
egories. The similarity was automated by comparing
what was changed by the prototype to the actual edit
on Stack Overflow. The similarities were measured us-
ing the difflib library with the aforementioned ‘simi-
larity ratio’; if this ratio value was over 0.85 (signifying
the two strings were over 85% similar), it was consid-
ered a success.

6 Results

6.1 Comparisons

Figures 6 and 7 include hand-picked examples of suc-
cessful documentation improvement.
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Figure 6: A comparison between the sample input text
and the formatted output text. This shows automatic
tagging of code snippets as well as inline code format-
ting.

6.2 Test Results

6.2.1 Manual Testing

As the manual testing (Figure 8) was based on opin-
ion rather than exact cases, the results performed bet-
ter than the automated testing. Most of the posts in
the ‘Formatting’ category performed well because the
problems with the initial post were fixed by the proto-
type; most of the issues in posts tagged ‘Formatting’
had poor sentence casing or missing code tags. Some
edge cases prevented all of the posts from performing
well; this is expanded further in Section 6.3.

The ‘Grammar’ category performed well when fix-
ing spelling errors, but also for different reasons; often
the original editor did not fix the sort of issues that the
prototype does. In this case the prototype performs
successfully where a human may have not. However,
since the prototype does not perform grammar replace-
ments, the prototype would not have done enough in
each case to be considered ‘properly edited’.

Edits in the ‘Adding’ category had varying levels of
success. The prototype only works on the content be-
fore the edit; therefore, any text added afterwards had
no formatting applied to it. This often meant that the
prototype would try to fix issues that were not present,
sometimes ‘fixing’ correct formatting.

This problem was amplified in the ‘Editing’ and
‘Improving’ categories. The significant issues with the
existing documentation did not get fixed by the proto-
type; formatting and replacement suggestions did not
fix the more problematic underlying issues in need of
edits.

6.2.2 Automated Testing

The harsher rules of the automated testing (Figure 9)
meant that many of the posts were not considered ‘suc-
cessful’. Most cases performed worse, as the data did

Figure 7: A sample of the warnings and change log
generated from the sample input text. This exam-
ple shows the natural language processing at work; the
highlighted commonly-removed phrase ‘any help would
be appreciated’ is found and a warning is sent encour-
aging the user to remove it.

Figure 8: The results of manual testing of the processed
text, sorted by category (n = 30)

not change where necessary. Similar to manual test-
ing, ‘Formatting’ performed well because the proto-
type performed the same changes that the actual edit
did: Markdown improvements and/or sentence cas-
ing. ‘Grammar’ performed surprisingly well in the au-
tomated testing given that its success in the manual
tests relied on subjective improvement. This may be
due to favourable test cases or minimal changes in the
actual edit. The ‘Improving’ category performed sim-
ilarly badly in the automated testing; the edit would
change grammar rules that either were not originally
incorrect or largely unimportant compared to the more
pressing issues. The ‘Adding’ category performed the
worst in automated testing as the added edit content
would be significantly different to whatever the proto-
type would output.
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Figure 9: The results of automated testing of the pro-
cessed text, sorted by category (n = 30)

6.3 Limitations/Issues

6.3.1 False Cases

The prototype contains a lot of corner cases that pre-
vent full use in a general context. The trivial correc-
tions (especially for Markdown corrections) often trig-
ger too often, turning valid brackets into periods. This
could be fixed with more care with the patterns used in
the regular expressions. Similarly when spell-checking,
the checker will correct any word it finds a valid re-
placement for, even if the confidence of the replaced
value is very low. This also has a very trivial fix that
remained unexplored in the scope of this project.

6.3.2 Prescriptivism

Many of the false cases that occur are due to a de-
sign decision rather than a single piece of bad code.
Early on in the project, a decision was made to at-
tempt to rewrite and correct any section of text iden-
tifiable as being in need of change wherever possible.
This, while a noble effort, did not lead to good re-
sults. More often than not, words can be corrected
into context-incorrect replacements; this can lead to
situations where the word pre-correction can be more
readable than the replacement that was changed. Fur-
thermore, some words that are commonly identifiable
by a human reader did not show up in the list of English
words used. The word ”interactable” is an example of
one such word that a human reader would have no issue
understanding but that the computer did not properly
identify.

In future, an attempt should be made to fully iden-
tify poor grammar and spelling in the context of a sen-
tence; more importantly, however, the code should be
descriptive rather than prescriptive until it has a con-
siderable success rate.

6.3.3 Scope

The largest limitation in the project was one of scope;
while it corrects certain cases to do with formatting and
warns about other cases to do with removed phrases, it
makes no attempt to fix sentence-scale errors, or even
improperly capitalised words. Also, since it interprets

any word that is not found in the word list as an inline
code snippet, it can often pick up improper formatting
as a spelling error rather than a formatting error.

The original scope of the project did include fixes
for grammar and many of the issues outlined above,
but was changed due to time constraints and difficulty;
see Section 8.1.

7 Repository Access

The GitHub repository for the project can be found
at https://github.cs.adelaide.edu.au/a1771834/
stack_overflow_post_improver

8 Conclusion

The prototype system works well enough as a proof of
concept; however, it would need to be heavily refined
for use in correcting actual posts. It does not detect or
correct enough of the more important readability issues
in sentences such as poor sentence structure. With
more effort, the project could eventually be able to
reconstruct posts to be more clear and contain more
readable natural language.

8.1 Project Changes

The original project’s plan was to ‘improve readabil-
ity of documentation by removing ambiguity and in-
completeness where possible’; this scope is not only
far larger than the time frame that supposedly rep-
resents it but also is rather unattainable due to its
vagueness. Actually restructuring the posts seen on
Stack Overflow would require the entire sentence to be
de-constructed using natural language processing and
re-constructed to be correct, which has not been ex-
plored enough in similar work to be feasible as only
a portion of this project. Furthermore, to fix incom-
pleteness would be to ask a program to understand the
context of a post; at best, this means incorporating an
interpreter for every possible code context; at worst,
this means knowing exactly what the original poster
actually meant by each post.

8.2 Future Work

If given more time, the project could be expanded
through more natural language processing replace-
ments. For example, sentences containing problematic
n-grams could be automatically fixed instead of simply
warned against.

Furthermore, a browser plugin or extension could
be programmed, potentially with the help of the Tam-
permonkey or Greasemonkey browser extensions; these
extensions could hook into the JavaScript segments of
Stack Overflow itself, allowing the potential warnings
to be displayed in realtime over posts. It could be used
as a tool for moderators or editors of Stack Overflow
posts to signify what portions of existing posts should
be edited.
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